Ethical responsibilities in a national waste management programme

Charles McCombie
Switzerland

Ethical Principles in Waste Disposal

- → Intergenerational Equity
 - "fairness to future generations"
- → Intragenerational Equity
 - "fairness across current generations"
- → Others
 - Sustainability
 - Precautionary Principle
 - Polluter pays

Intragenerational Equity Issues

- Risk levels relative to other activities
 - Risk-based regulation rare!
- → Social and economic impacts

 - Proper use of society's resources
 Fair compensation of host communities
- Spatial distribution of risks and benefits
 - Siting debate national and international
 - Compensation issues
- → Public involvement
 - Dialogue not just one way information flow! Participation in decision making

Intergenerational Equity Issues

- Minimise burdens
 - Financial, technical and institutional
- → Protect at same (or higher) level
 - Guidance for dose or risk criteria
- → Maximise choice
 - Disposal vs surface storage
 - Design for retrievability

Current practices (ICRP)

- → Justification: No practice should be adopted unless sufficient benefit can be shown. Any protective measures taken should do more good than harm.
- Optimisation: All exposures should be kept as low as reasonably achievable, taking economic and social factors into account
- → Limitation of dose and risk: limits should be set to ensure that no individual is subjected to unacceptable radiation.

Potential future exposures

- → IAEA Principle 4: Protection of future generations: potential exposures to future generations should not be greater than those that are acceptable today.
- → IAEA Principle 5: Burdens on future generations: Radioactive waste shall be managed in a way that will not impose undue burdens on future generations

Safe management of spent nuclear fuel and high-level wastes

- Deep geological disposal can ensure safety without imposing significant burdens on society. There is no other currently feasible way to ensure safety for future generations.
- For technical (heat emission) and societal reasons, the implementation of a deep geological repository is a task that takes decades.
- → Safe storage is feasible for many decades but it is not a final solution.
- → Every responsible nuclear programme should have a credible geological disposal strategy that ensures safety at all times and leaves choices open as far as is consistent with this safety goal.

Requirements on a credible spent fuel and HLW disposal programme

- 1. A feasible technical design for a repository that will ensure long-term safety when sited in an appropriate location
- 2. A funding mechanism to ensure that the resources needed for implementing the repository are set aside in a fund that will be available when needed.
- 3. A site or sites that have been investigated to the level needed to ensure that it will meet regulatory standards.
- 4. A sufficiently broad societal consensus that components 1-3 have been fulfilled.

Achieving societal acceptance

One Step at a Time:
The Staged Development
of Geologic Repositories

Some keys to Adaptive Staging

- Deliberate decision-making process between stages
- Options remain open, including reversibility
- → Focus on program progress more than on pre-arranged milestones
- → Emphasis on continuous learning and response to new knowledge
- → Seek and be responsive to public input
- → Communicate clear definition of program success

Specific recommendations for the U.S. program

- → DOE should adopt Adaptive Staging
- Pilot, test, and possibly demonstration activities
- → Independent scientific oversight group and stakeholder advisory board
- → Safety analysis and a safety case based on the full inventory (with USNRC)
- → Ensure that the regulatory process enables the application of Adaptive Staging
- → Consider the impact of Adaptive Staging on the overall waste management system
- → Continue to actively promote a safety culture

Future options

→ Implement a first stage or pilot geological repository that can demonstrate unequivocally that the four components of a credible strategy have been satisfied

or

→ Implement the full geological repository in a manner that allows retrievability, even at a high cost, should future generations decide on this action

or

→ Stop short of implementation - BUT ONLY AFTER FULFILLING THE FOUR REQUIREMENTS - including siting consensus

A credible and ethical future programme for the USA

- Openly acknowledge that the Yucca Mountain closure is a policy decision rather than a negative judgement on the safety of the site or on geological disposal specifically
- → Initiate a new adaptively staged siting program that is geologically and geographically broad based and that includes willingness of a local community to host a deep repository.
- → Continue work on advanced technologies that might positively affect the nature or the volumes of the longlived radioactive wastes to be disposed of in the future.

The End

Other Principles

Sustainability

Most relevant for nuclear power, for siting of repositories

Precautionary Principle

- No irreversible harm unless compelled; don't do it if we don't understand it
- Less relevant if potential impacts localised and noncatastrophic

Polluter pays

 Principle universal, method of application to disposal varies

